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The phase diagram and the tricritical point of a collapsing lattice animal are 
studied through an extended series expansion of the isothermal compressibility 
Kr on a square lattice. As a function of the variables of fugacity and Boltzmann 
weight, K r is investigated using partial differential approximant techniques. The 
characteristic flow pattern of partial differential approximant trajectories is 
determined for a stable fixed point. We obtain satisfactory estimates for the tri- 
critical fugacity x, = 0.024 + 0.005 and temperature T, = 0.54-I-0.04. Taking into 
account only linear scaling fields, we are also able to get the scaling exponent 
),= 1.4_ 0.2 and the crossover ~ = 0.66 + 0.08. Our results are in reasonable 
agreement with previous estimates in the literature. 

KEY WORDS: Series expansion; tricritical point; collapse transition; partial 
differential approximants; lattice animal; branched polymer. 

1. I N T R O D U C T I O N  

Linear polymers have been studied for a long time both  experimental ly and 
theoretically (see ref. 1 and  references therein). A l inear polymer molecule 
in dilute solut ion in a good solvent can be modeled as a self-avoiding walk 

on a regular lattice. In  this regime the interact ions are most ly  the excluded- 
volume ones. As the temperature  or the quali ty of the solvent decreases, 
attractive forces become impor tan t  and  the polymer  may collapse at the 

tricritical F lory  0 point.  The attractive forces are induced by interact ions 
with the solvent. 

Branched polymers are made of monomers  with funct ional i ty greater 
than 2. Randomly  branched polymers in dilute si lut ion in a good solvent 
can be modeled as lattice animals.  Lattice animals  are connected clusters of 
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occupied lattice sites including branches or loops. The introduction of 
attractive monomer-monomer  interaction between nearest neighbor sites 
may lead to a collapse of the lattice animal at low temperatures. Such a 
collapse can experimentally be found in gels, particularly in acrylamide gel 
in a water-acetone mixture, where the volume changes by a factor 10 3 and 
a combined collapse and reswelling mechanism was found recently. I-'~ 
Theoretical evidence for this transition has been provided by several 
techniques: transfer matrix in two-dimensional strips] ~ Monte Carlo 
methods,(3" 4) and series.(5-t~ Dhar t ~ ~ ~ proved the existence of the collapse 
transition in a related model-- the  two-dimensional directed lattice animal. 

As the upper critical and tricritical dimensions are very high for the 
branched polymers (de= 8, d, =6) ,  Flory arguments (mean field) are not 
expected to be as good as for the linear polymer case. 

Besides being good models for branched polymers, lattice animals also 
appear in other physical situations, such as equilibrium DLA t~2~ and the 
study of vesiclesJ TM The collapse of lattice animals may be driven by quite 
different agents: the number of interacting pairs of nearest neighbor sites in 
the animal, the number of cycles, or the number of nearest neighbor con- 
tacts (i.e., sites not directly connected by a bond belonging to the animal). 
The first two are equivalent tS~ and there are recent claims of the exact 
determination of the critical exponents, t14~ Contact models are believed to 
not belong to the same universality class as the pair or cycle models. 171 

In this paper our aim is to discuss the site lattice animal model defined 
on a square lattice and with attractive nearest neighbor pair interactions. 
In Section 2 we present the model and discuss some of its general features 
and behavior; in Section 3 we use a simple extrapolation algorithm to get 
the phase boundary. In Section 4 the partial differential approximant 
method is briefly introduced and applied to our model. The characteristic 
curves of a typical approximant are investigated in Section 5. The numeri- 
cal estimates of the tricritical fugacity and temperature as well as the 
tricritical exponents are determined and they are then compared with the 
values obtained through other approaches. Finally, in Section 6 we sum- 
marize our results. 

2. T H E  M O D E L  

Lattice animals can be classified into two different types: site and bond 
animals. A site animal is a connected section graph of the lattice so that if 
two vertices of the animal are on adjacent lattice sites they must be con- 
nected by an edge in the animal. A bond animal is a connected subgraph 
of the lattice so that two adjacent vertices of the animal may or may not 
be connected by an edge in the animal. A pair of two nearest neighbor sites 
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not directly connected by a bond belonging to the animal forms a contact. 
For site animals the number of contacts is zero, since contact models can 
only be constructed for bond animals. ~6) 

Recently an exhaustive exact enumeration of lattice animals was 
carried out in both square and cubic lattices. 16~ The animals were classified 
by their numbers of vertices (up to size 19 for the square lattice), edges, 
and contacts. In our study, we consider one single cluster of N connected 
sites, i.e., one site animal, defined on a square lattice. Each pair of nearest 
neighbor sites has an additional attractive energy and the energy of the 
whole lattice animal is just the number of all pairs of nearest neighbors, t~) 
From Appendix A of ref. 6 we can extract the number aN,,, corresponding 
to site animals (on the square lattice) with N vertices, m edges, and, of 
course, no contacts. For site animals, m coincides with the number of pairs 
of nearest neighbor sites. In this way, we can construct the grand partition 
function 

19 18 
G(x, y ) =  1 + ~ Z aN,,,,xNy m 

N = I  m = 0  

= 1 + x + 2x2y + 6x3y + xay3(y + 18) + -.. 1 ) 

where x = e x p ( f l p )  is the fugacity ( x <  1; we use the same notation as in 
ref. 1), y=exp(1 /T )  is the Boltzmann weight ( y >  1, so as to ensure an 
attractive pair interaction), and T is the reduced temperature. 

We have truncated the power series up to order 18 in the variable y 
for a simple reason: animals with size N~> 20 do not contribute to order 
m ~< 18 in the variable y. 

From the generating function G(x, y) we can derive the density 

x OG 
p ~ (N> =~ O-~v (2) 

and the fluctuation or isothermal compressibility 

. . .  2 Op 
Kr,.~ ( N  2) -- <,/V 2 = X ~ x  (3) 

Formulas ('2) and (3) can be implemented using symbolic computation 
software (e.g., MAPLE2). In Fig. 1 we plot p and Kr  versus T for some 
fixed values of x. For  small x the order parameter p evolves from a discon- 
tinuous jump (typical of a first-order phase transition) to a continuous 

2 MAPLE,  copyright by the University of Waterloo, is a registered trademark of Waterloo 
Maple Software. 
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Fig. 1. Density p (thick lines) and isothermal compressibility K r (thin lines) versus tem- 
perature T for some chosen fugacities x. The graph was obtained using a site lattice animal 
with size N= 19. 

behavior for higher x values. This is a clue to the presence of a tricritical 
temperature. Also, the isothermal compressibility seems to exhibit, in the 
thermodynamic limit, a change from a delta-function to a power-law 
singularity. 

3. F I N I T E - S I Z E  E X T R A P O L A T I O N  

Finite-size scaling theory attempts to describe how large-scale collec- 
tive phenomena, associated with the onset of divergent fluctuations near 
critical points, manifest themselves in small samplesJ ~5~ For  different lattice 
sizes physical quantities may be obtained and their values conveniently 
extended using some reliable extrapolation algorithm. 

In our case, the size of the animal N (i.e., the number  of sites belong- 
ing to the animal) can be fixed and the corresponding (truncated) formulas 
(1) and (3) can be calculated. 

For any value of the fugacity x, we can determine the temperature T 
which maximizes the isothermal compressibility KT. The plot of x versus T 
yields the "phase boundary" for that finite value N (see Fig. 2). Thus, for 
fixed x and different values of N, we can obtain a sequence T (NI of "critical 
temperatures." The extrapolated temperature of this sequence will deter- 
mine the phase boundary of a system of infinite size. 

We will assume that the sequence T (m has the following asymptotic 
form (N - ~ ): 

TIN)= Tc + ai N-O~ + a2N-2O~ + . . .  (4) 

with a power-law dependence expected at the critical temperature. 
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Of the algorithms at our disposal t~6~ we have concentrated on two: 
the van den Broeck and Schwartz 1~7~ (hereafter referred to as VBS) and 
the Bulirsch and Stoer ('s~ (hereafter referred to as BST) algorithms. To 
extrapolate our sequence we have chosen the BST algorithm for the 
following reasons: it does not require a consecutive sequence of finite data, 
i.e., it is more flexible than the VBS algorithm, and its convergence is also 
faster and is less sensitive to rounding errors. 

We have considered (for each fixed fugacity x) a sequence of "critical 
temperatures" T IN~ corresponding to values N =  7, 10, 13, 16, and 19. The 
desired limit Tc of Eq. (4) was obtained from a table of extrapolants con- 
structed according to the BST algorithm. The error in the determination of 
T,. is defined as the modulus of the difference between the two extrapolated 
temperatures at the penultimate stage of the algorithmJ'6~ The exponent ~o 
is a free parameter which we allowed to assume different values for a deter- 
mined sequence to be extrapolated. Minimizing the error yields an intrinsic 
criterion for choosing co. Indeed, for each fugacity x, we selected the expo- 
nent r which minimized this error. 

In Fig. 2 we show the phase diagrams corresponding to the finite 
values N =  7, 10, 13, 16, and 19 (thin lines). Using the least square method, 
we fitted the best curve to the extrapolated temperatures obtained through 
the BST algorithm. This curve corresponds to the phase boundary of a 
system of infinite size and is also shown in Fig. 2 (thick line). It separates 
the swollen phase from the collapsed one and is in good agreement with 
the phase diagram obtained through the transfer matrix technique. (~ 
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Fig. 2. Phase diagram computed via the BST extrapolation algorithm (thick line). The phase 
diagrams corresponding to the finite values N= 7, 10, 13, 16, and 19 are also shown (thin 
lines). 
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Exponent OJmi,, which minimizes the error in the BST extrapolation, as a function of 
the extrapolated temperature T,.. 

However, the exact position of the tricritical point on the phase boundary 
is very difficult to obtain, so, for this purpose, we will apply the partial 
differential approximant technique in the next section. 

In Fig. 3 we plot the exponent ogmi. corresponding to the minimum 
error against the extrapolated temperature To. We remark that o9 is only 
an effective exponent, since Eq. (4) is valid only in the asymptotic limit. 
Large fluctuations appear near the tricritical temperature T, ~ 0.5 and the 
values seem to go asymptotically to ogmin ~ 0.95 for the high-temperature 
region where a second-order phase transition takes place. We found the 
mean value ( o 9 m i n )  = 1.02 in the temperature interval [0, 4]. The increase 
of COmi, close to T, ~ 0.5 is certainly a clue to the presence of the tricritical 
point. 

4. PARTIAL DIFFERENTIAL APPROXIMANTS 

The concept of partial differential approximants was introduced by 
Fisher some time ago. 119~ A partial differential approximant (PDA) 
provides a means of extrapolating the information embodied in the coef- 
ficients of a given double power series expansion. It is an appropriate tool 
in the study of functions which display intrinsically many-variable 
singularities. In particular, one may hope to extract reliable estimates for 
the location and the scaling exponents of the multisingular points/-'~ 
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A partial differential approximant to a function f ( x ,  y) is the solution 
F(x, y ) -  FK:Mlv~(X, y), satisfying appropriate boundary conditions, of the 
defining equation 

OF(x, y) y) OF(x, y) 
Qg(x,  y) a ~  + Ru(x'  Oy = PL(x, y) F(x, y) + Ug(x, y) (5) 

Here the polynomials QM, RN, PL, and Uj (QM=~.(  ..... ')~Mq ...... 'xmy m', 
etc.) contain only powers defined by the label sets M =  (m, m'), N ~  (n, n'), 
L D (/, l'), and J ~  ( j , j ' ) .  Their coefficients q ..... ,, r,,.,,,, Pl, r, and uj.j, are 
obtained by solving linear algebraic equations chosen so that the power 
series expansion of F(x, y) reproduces the known series f ( x , y ) =  
~.(i.i,)~ifl.rx*y r to an acceptable degree. The coefficients f i .e are known 
only for (i, i') belonging to some finite label set I (index set); the generating 
equations for the polynomial coefficients follow from demanding that when 
F(x, y) is replaced by f ( x ,  y) in (5), the power series expansion of both 
sides agree in all orders xky ~' for which (k, k') lies in a prescribed matching 
label set K (see ref. 21 for further details). 

The multisingular point (xc, y~) is determined by the fixed-point 
equations 

Qg(xc, y c ) = R ~ x , . , y ~ ) = O  (6) 

In general F(x, y) obeys an asymptotic scaling law which may be 
written in the canonical form 

F(x, y).~ I.~1-~z(Y,/I~I r + B (7) 

where ), is the scaling exponent, ~b is the crossover exponent, B represents 
the so-called background amplitude, and 2 and )7 are termed linear scaling 
fields given by the linear combinations 

2 = Ax - Ay/e2 and 3~ = Ay - e I Ax (8) 

with Ax = x- -x , ,  and Ay = y - y c .  The slopes el and e 2 of the scaling axes 
must be the roots of 

Qye 2 -b ( Qx - Ry) e - R,. = 0 (9) 

where Qx, Qy, R,., Ry a r e  partial derivatives with respect to x and y 
evaluated at the multicritical point (Xo y~). 

The most appropriate method of solving the defining partial differen- 
tial equation (5) is through an integration along the characteristics. These 
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may be constructed by defining a timelike variable r and solving the 
ordinary differential equations 

= QM(X, y) and = RN(X, y) (10) 

If we linearize around the multicritical point (x,., y,.) the equations 
above can be written as 

a.~ ay ~,_y (11) = )- l 2 and d-r = 

where 

21=Qx-R, . /e2  and 2 2 = R , , - e l Q y  (12) 

When both 2, and 22 are positive (negative) we call (x,., y,.) an 
unstable (stable) point; when they have opposite signs we denote it a 
saddle point, whereas in situations where the solutions of Eq. (9) become 
complex we call it a spiral point. 

We can get the exponents from the expressions 

r = ;t2/21 and y = Po/2, (13) 

We have applied the PDA technique to study the multisingular 
properties of the isothermal compressibility K r as a function of the fugacity 
x and the Boltzmann weight y. Our results are presented in the next 
section. 

5. N U M E R I C A L  R E S U L T S  

In the application of the PDA technique, it is necessary to choose the 
nonzero powers of the polynomial label sets M, N, L, J and of the match- 
ing label set K. Important guidance for the choice of these label sets is 
provided by theorems concerning faithfulness and invariance properties of 
PDAs. 121~ An approximant F(x, y) is faithful if each coefficient Fi. i, of its 
series expansion is equal to jr,., ~, for all the f,. ~, that were needed to compute 
F(x, y). Faithfulness is clearly a desirable property for an approximant. It 
can be ensured by imposing the proper boundary conditions and by pick- 
ing a matching label set K of an appropriate shape. Another important 
property is the invariance of approximants under Euler transformations 
[ x--* 2=  Ax/( 1 + Bx) ]. Approximants conforming or nearly conforming to 
the requirements for Eulerian invariance provide more reliable and stable 
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estimates for the properties of the function in question. In fact this seems 
to be confirmed in the present work as well as in the practical calculations 
of refs. 19 and 22. Invariance hinges on appropriate choice of the label sets 
M, N, L, J, and K. 

In many series that arise in practical applications a large fraction of 
the coefficients f,.. v are known to vanish identically. For example, the upper 
triangular series analyzed by Chen et al. ~22~ have fa. v = 0 for i < i'. In other 
cases, xT f (x ,  y )  may be upper triangular for some positive or negative 
integer 7, and so on. In ref. 21, well-developed theorems are given that can 
be applied to upper triangular functions: Theorem 3.7 establishes the 
appropriate shapes for the label sets so as to ensure that the approximant 
is faithful provided Po. o - hq ~. o - h' r o. t ~ 0 (where h and h' are nonnegative 
integers). Theorem 6.3 presents quite compatible criteria for Euler 
invariance. 

We have studied the critical behavior of the isothermal compressibility 
K r through the PDA technique. Due to the upper triangular character of 
. f  = x S K r ( x ,  y ) ,  the shapes of the polynomial label sets M, N, L, J and of 
the matching label set K were chosen according to Theorems 3.7 and 6.3 
of ref. 21 on faithfulness and on Euler invariance. However, for all allowed 
choices of K, this procedure led us to a set of equations which contained 
undesirable relations satisfying Po. o - hq~. o - h'ro. ~ = 0 and thus violating 
one of the conditions for faithfulness. Nevertheless, the conditions for 
Eulerian invariance were still maintained, and this was certainly very 
important. As a matter of fact, in many works where the PDA method is 
applied, the selected approximants are exclusively Eulerian or near- 
Eulerian.~ 22, 23 ) 

Specifically, Theorem 6.3 of ref. 21 on Euler invariance on x estab- 
lishes that the label sets M, N, L, J must be contained in upper triangular 
arrays so that m >~m'+ 1, n >~n ' -1 ,  l>~ l', andj~>j ' .  An additional condi- 
tion is ~ -  2 = ~ = f =  j, where ~,  19, /~ and j are, respectively, the largest 
powers of x in the polynomials QM, RN, PL, and Us. In addition, each 
row in the corresponding Cartesian arrays of these label sets must be f l u sh  
right, i.e., a gapless sequence of elements running downward from the 
respective largest power of x to a lower limit. The matching set K should 
be upper triangular and f l u sh  left.  

In this way, we then constructed the upper triangular arrays M ,  N_ ,  
and L for the corresponding defining polynomials Q M = x Q T a _ ( x ,  y ) ,  
R N =  YRN_(X,  y), and PL, with ~ - 2  =t~ = l =  9. This is compatible with 
the requirements on Euler invariance. Since for strongly divergent functions 
like K r  the background term Uj would not normally be so important, we 
have made U j = O .  This spoils prec ise  Eulerian invariance (although a 
homogeneous PDA with U j =  0 can be Euler invariant); however, it seems 
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to be better to allow larger arrays M and N, in particular, since these 
determine the flow patterns of the characteristic trajectories and thence the 
critical locus (as will be exposed later). 

The standard normalization P0. 0 = 1 was used in order to obtain a set 
of nonhomogeneous linear equations. To avoid an over- or underdeter- 
mined set of algebraic equations, the number of linearly independent equa- 
tions must clearly equal the number of unknown polynomial coefficients. 
The generating equations for the polynomial coefficients were solved with 
help of MAPLE for different choices of matching label sets compatible with 
the theorem on Euler invariance. 

We computed a total of 210 near-Eulerian approximants, 3 109 of them 
exhibing the multicritical point (the crossing of zero loci QM= RN= 0) in 
the intervals 0 .015<x<0 .035  and y > l .  One should observe that a 
singularity in the region y < 1 would correspond to the sector of repulsive 
monomer-monomer  interactions. From these multicritical points, 90 are 
stable points (82.6%), 13 are saddle points (11.9%), and 6 are spiral 
points (5.5 %). 

One observes that defining a multisingular point as being stable or 
unstable is only a matter of the sign of r in Eq. (11 ).t24) On the other hand, 
saddle points correspond to a negative crossover exponent ~b. They are 
associated with corrections to scaling 123) where irrelevant operators give 
rise to contributions (with nonintegral powers) to the expansion of some 
thermodynamic quantity near a critical point. The spiral points correspond 
to nonphysical singularities and should be rejected. 

The solution of the ordinary differential equations (10) with given 
initial conditions specifies a definite trajectory in the (x, y) plane. The set 
of all trajectories defines a flow pattern which is characteristic of the 
approximant in question. We have found some characteristic curves for a 
typical stable point approximant by solving numerically the corresponding 
equations (10) through a Fehlberg fourth-fifth-order Runge-Kutta method. 
The characteistic flow pattern of this approximant in the (T, x) plane is 
shown in Fig. 4. The loci of Q = 0 and R = 0 are represented by dotted cur- 
ves. Their intersection determines the multicritical point C. The straight 
lines describe the tangents of the scaling axes )7 and 37 at point C in the 
(T, x) plane. The characteristic trajectories are shown by full lines labeled 
1-7 in a clockwiselike manner. Curves 1-5 are tangent to the scaling axis 
37 at the multicritical point; they correspond to the critical trajectory. The 
arrows indicate the sense of the trajectories for increasing positive r. Note 

3 In the literature, the use of near-invariant approximants is usually found to be entirely 
satisfactory. That is to say, those approximants that satisfy a variety of invariance 
requirements are not obviously better converged than their "near-invariant" neighbors. ~25~ 
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Fig. 4. Characteristic flow pattern of PDA trajectories for a typical stable-point (r 
approximant. Some characteristic curves (1-7) are shown by full lines. The loci of Q = 0 and 
R= 0 (dotted curves) intersect at the multicritical point C. The straight lines represent the 
tangents of the scaling axes .7 and 9 at point C in the ( T, x) plane. 

that the trajectories do not meet or cross except at the multisingular 
point(s) of the approximant.  Since the slope dx/dT of each trajectory is 
proportional to QM/R,v, the arrangement of zero loci determines the over- 
all topology of the flow pattern. In fact, one can observe in Fig. 4 that the 
slope of a trajectory passes through zero when it crosses a Q = 0 locus, 
whereas the slope passes through infinity when a trajectory crosses an 
R = 0 locus. 

In Fig. 5, the critical trajectory corresponding to the same stable point 
is presented for larger intervals of temperature and fugacity. The loci of 
zeros and the tangents of the scaling axes at the multicritical point C are 
also plotted. Note that the critical line is in good accordance with that one 
extrapolated through the BST algorithm (Fig. 2). 

We now average the relevant quantities in order to get an estimative 
of the tricritical fugacity x, and temperature T,. For  this purpose, we 
discard the saddle points ( r  and the spiral points (nonphysical 
singularities). Fortunately, these represent only 17.4 % of the total of multi- 
critical points. The relevant multisingularities constitute the majority 
(82.6 %) and correspond to stable points. Over this ensemble we obtain the 
averages and standard deviations of the tricritical fugacity and temperature 

x, = 0.024 _ 0.005 and T t = 0.54 _ 0.04 (14) 

These results are in good agreement with (although with a larger standard 
deviation than) the values x, = 0.0230 + 0.0004 and T, = 0.535 + 0.005 
obtained using transfer matrices for strips, t'~ 
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Fig. 5, Critical trajectory corresponding to the same stable-point approximant of Fig. 4, for 
larger intervals of temperature T and fugacity x. The loci of zeros (dotted curves) and the 
tangents of the scaling axes (straight lines) at C are also plotted. 

With regard to the scaling exponents 9' and ~b, it is important to point 
out that the results of the linearized theory [formulas (11)-(13)] are fully 
valid only for values of the crossover ~ lying in the interval (1/2, 2); 
otherwise we must consider nonlinear scaling fields. 124~ 

In order to calculate the mean values of the exponents, we average 
them only over the approximants with q~ in this restricted interval. The 
scaling and crossover exponents obtained are 

y =  1.4+0.2 and ~ = 0.66_+ 0.08 (15) 

The crossover exponent is in good agreement with the value estimated by 
the transfer matrix method, namely, q~=0.657+0.025, ~'1 and with the 
proposed exact value $ = 2/3/~4~ 

Additionally, we also explored the PDA technique by choosing other 
shapes for the label sets. Specifically, we selected square arrays. The 
criterion for this selection is ad hoc. However, it is worth comparing the 
results of both strategies. In this choice, the label sets M, N, and L are 
gapless square arrays with degrees rh = 19 = [-- 8. The polynomial Uj is null 
and, as usual, P0, 0 = 1. In the defining partial differential equation, F(x, y) 
is then replaced by the series KT(x, y) known up to order x~gy ~s. Due to 
the presence of derivatives in this equation, the elements (k,k ')  of the 
matching label set K are chosen in the ranges 0 ~ k ~< 18 and 0 ~< k'~< 17. 
The equations originated from the smaller power coefficients are fixed and 
other equations coming from the larger set which includes higher power 
coefficients are added in a combined way. This procedure yielded 451 
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approximants exhibiting the expected tricritical points with the following 
profile: 15 stable points, 79 unstable points, and 357 saddle points (the 
nonphysical spiral points were rejected). Besides the expected tricritical 
point, most of the approximants present a plethora of other multicritical 
points in the (T, x) plane, some of them with a nonphysical nature. For 
example, a typical saddle-point approximant presents an extra fixed point 
D on the axis x =  0, which can be regarded as a defective or spurious 
singularity since we know that the underlying function Kr(x, y) is analytic 
in that region. Moreover, this point does not belong to the critical trajec- 
tory [which is tangent to the scaling axis ~ at the main tricritical point 
C--(T,., x,.)]. There is another fixed point B on the critical trajectory, in 
the region T< T,.; it could, in principle, change the critical behavior along 
the locus CB. This kind of additional fixed point has already appeared in 
the literature} TM It was called a border point and might be interpreted as 
a premature representation of an incipient tricritical point. 

We have also studied the statistics of extra fixed points over the stable 
or unstable tricritical point approximants. Around 94% of these 
approximants contain defective points (distributed in all stable point 
approximants and in 73 of the unstable ones). The border points appear in 
14.9% of these approximants (specifically, in 12 stable-point approximants 
and only in 2 unstable ones). Again, the averages of the relevant quantities 
were taken over this ensemble of approximants (saddle-point approximants 
were discarded). The estimatives of the tricritical fugacity and temperature 
are x,=0.024_+0.009 and T,=0.55_+0.08. The scaling and crossover 
exponents averaged over those approximants with r in the interval (1/2, 2) 
are ? = 1.9 +_ 0.5 and r = 0.63 +_ 0.09. 

We can now compare these results with those obtained from the near- 
invariant approximants through Euler transformation [see Eqs. (14) and 
(15)]. The estimates resulting from the two strategies are in good agree- 
ment, but smaller standard deviations characterize the near-invariant 
approximants. Besides, as we have seen, the unreasonable cases (saddle 
multicritical points and defective points) are much more frequent in our 
"noninvariant" approximants. On the contrary, stable multicritical points 
constitute the majority in our near-Eulerian approximants. Once more, the 
importance of invariant approximants (which provide more reliable and 
stable estimates.) has been noted. In this sense, the estimates in Eqs. (14) 
and (15) are the preferable results. 

6. S U M M A R Y  

We have presented a model with two parameters, temperature and 
fugacity, to describe the collapse transition of branched polymers. These 
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were treated as site lattice animals with attractive nearest neighbor pair 
interactions. Thanks to an exhaustive exact enumeration of these animals, 
we were able to write down the isothermal compressibility and to verify the 
existence of a tricritical point separating a region of a first-order phase 
transition from a second-order phase transition. A simple extrapolation 
algorithm gave us a sketch of the phase boundaries. 

To study more deeply the tricritical point we have applied partial dif- 
ferential approximants to locate the singularity and to estimate the corre- 
sponding scaling exponents. The importance of the use of invariant 
approximants has been noted once more. The values we obtained are in 
good agreement with those derived from other techniques. 

We hope our work will encourage more people to use the method, 
which is specially designed to treat multisingularities. 
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